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CHAPTER 1.

INTRODUCTION

The following research was conducted as part of a joint project for the University of Illinois

and the Metallurgy and Quality Assurance Team of the United States Army's Construction

Engineering Research Laboratory. The ultimate objective of the program is to develop an

automated welding system which produces consistently good welds despite variations in material

parameters and other disturbances. The scope of the research is limited to consumable-electrode

gas metal arc welding (GMAW) since this is one of the most frequently employed and

I economically important welding processes.

It is well known that the reliability of the weld is strongly correlated to the microstructure

I and gross geometry of the joint. These properties are determined by the thermal and mechanical

history of the weld puddle and the rate at which it cools. The thermomechanical dynamics are

I driven by the flow of heat and mass from the torch as it travels along the weld joint. Arc current is

one of the key process variables that must be controlled if weld quality is to be maintained. This

3 aspect of weld quality control is the focus of this work.

A gearmotor drives a set of pinch rollers which feed wire down through the torch head for

3 consumption in the welding process. The arc current is determined by the rate of wire feed. Arc

current control is accomplished through a two-step design. First, a closed-loop wire feed servo is

3 developed which can track a reference wire feed rate. Second, an arc current controller is designed

which provides the reference for the wire feed servo.

3 Chapter 2 develops the wire feed mechanism model for use in the wire feed servo controller

design of Chapter 3. Chapter 4 derives the arc dynamics model which relates arc current to wire

3 feed rate. Chapter 5 makes use of this model along with the wire feed servo dynamics for the

closed-loop arc current controller design. The Appendix provides plots derived from computer

3 simulation as well as from experimental data to support the viability of the design.



CHAPTER 2.

WIRE FEED MECHANISM MODEL

2.1. Overview of the Wire Feed System

The electro-mechanical wire feed system shown in Figure 2.1 forms the plant around

which the closed-loop wire feed servo is designed. The input of this plant is taken to be a discrete-

time signal u(k) which is zero-order-held anci power-amplified to drive a dc motor. The motor, in 3
turn, drives a set-of pinch rollers through a reduction gearbox. The discrete-time output eT(k) is

defined to be the sampled voltage of a tachometer on the motor. This signal, properly scaled, 3
yields a sampling of the wire feed rate wF(t) in inches-per-minute.

Torque Disturbance I
u ) Pwr t Gear Wir w It

ZO.r Amp 0. Motor.. Reduction Roler I

[ h e (t)  e eTk)" I

Figure 2.1. Wire feed mechanism block diagram. I
The zero-order-hold (ZOH) digital to analog converter has an integer input u(k) E { -2048,

2048) and a real output e,(t) r [-5, 5] volts. The power amplifier is modeled as a fixed x4 3
gain block. This simplification of the power amplifier dynamics is valid because the dominant time

constant of the motor is two orders of magnitude larger that that of the amplifier. A detailed 3
analysis of the dc motor dynamics will be presented in Section 2.2. The system employs a 65.5:1

gearmotor with a torque efficiency of 66%. The tachometer conversion constant is 2 volts per 3
1000 rpm. Noiseless tach measurements are assumed. The pinch rollers have a diameter of

22
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1.626 inches. A torque disturbance is introduced due to eccentricities in the wire roller mechanism

and due to the friction of the wire feed path as shown in Figure 2.2.

~guides-

o o pinch rollers

torch head wire spool

work piece

Figure 2.2. Wire path.

2.2. Direct Current Motor Model

The dc motor of Figure 2.3 is modeled as a series connection of equivalent armature

resistance and inductance, and an ideal motor (Kuo (1980)).

R a La

e(t) eb(t) Moom' gm

i(t) V Qt
a(t) m(t)T(t)

Figure 2.3. Direct current motor model.

3



Signals and Constants:

ea(t) armature voltage Ra armature resistance

ia(t) armature current La armature inductance

eb(t) back emf voltage Kb back emf constant

om(t) shaft velocity Jm rotor inertia

Tm(t) torque developed by motor Ki torque constant

TL(t) load torque Bm viscous frictional coefficient

The dc motor's dynamic equations are now developed. Kirchoffs Voltage Law around the

armature loop yields the electrical constraint equation

ea(t) = Ra ia(t) + La dt + eb(t). (2.1)dt

Newton's Second Law gives the mechanical constraint equation
dwmr(t)

Tm(t) = TL(t) + Bm Cwm(t) + Jm dt (2.2)

The electro-mechanical coupling equations are

Tm(t) = Ki ia(t) , and eb(t) = Kb COm(t). (2.3)

The state equations for the motor dynamics are now obtained by substituting equations (2.3) into

(2.1) and (2.2).

dia(t) Ra Kb t (2.4)
dt = Ula(t) - Coi(t) + ea(t)

dLm4(t) Bm Ki (2
dt = - " Cm (t) + -' ia(t) - TL(t) (2.5)

where the motor constants

Ra = 2.55x 101 Q Kb= 2.31x 10-2 Y. K = 3.27x 101 oz-in
rad A

La = 2.04 x 10-3 H Jm = 5.37 x 10-4 oz-in.s 2  Bm = 1.00 x 10-3  rad
rad

are obtained from the manufacturer's specification sheets.

4



I
3 Analysis of the system time constants reveals a valid simplification. Make the following

two definitions:

Electrical time constant Te LI = 8.00 X10 4 S,R,

Mechanical time constant "tn = = 5.37 x 10-1 s.

3 Time constant rm exceeds r by more than two orders of magnitude. This suggests that it is

reasonable to neglect the electrical dynamics. Consider (2.4) multiplied by the armature

3 inductance La:

La dt Ra ia(t) - Kb wm(t) + ea(t) . (2.6)I
Since La is small, (2.6) may be approximated by

0 = - Ra ia(t) - Kb (On(t) + ea(t). (2.7)

I Solving (2.7) for the armature current ia(t) gives

ia(t) = ea(t) - Kb cm (t) (2.8)ia~t) -- Ra(2 )

3 Substitution of (2.8) into (2.5) yields afirst-order model of the motor dynamics:

dt- PmO~m(t) + - UT(t) (2.9)

I where
JB"= , + J ' (2.10)

U and 
P m + K1 Kh

UT(t) Ka ea(t) - TL(t) (2.11)

Taking the Laplace transform of (2.9) gives

Qin(s) 1 / Jm
UT(S) S + Pm

The resulting transfer function description of the dc motor is shown in Figure 2.4.

I
I
I
I



TL(t)

R,~s + Pm

Figure 2.4. Direct current motor block diagram.

The manufacturer's specifications for the wire feed motor yield the following numerical values:

Ki oz-in 18 O ___-rd

R" 1.28 -- I' = 1.86 x 103  Pm = 57.025 rac
R moz.in.s 2  P s"

Note that the wire feed motor acts as a low-passfilter with a cutoff frequency of 9.1 Hz.

2.3. Torque Disturbance Model

The wire feed gearmotor turns a set of spring-loaded pinch rollers which pull wire from a

large spool, through a series of guides, and down to the torch head (See Figure 2.2). The

resulting torque load on the motor has two principal components. There is a large constant load

due to the stiffness of the wire and the friction of the guides, rollers, and bearings. In addition,

mechanical imperfections in the pinch roller assembly cause an eccentricity that gives rise to an

approximately sinusoidal term.

The total torque load on the gearmotor shaft is modeled as

TG(t) = A + B sin (27t fDt). (2.12)

This torque at the gearbox is a product of the torque load on the motor, the torque efficiency of the

gearbox, and the gear reduction ratio. Reflect the gearbox torque back through the reduction gears

to obtain the torque load on the motor shaft:

TL(t) = (0.66)-i (65.5)- TG(t) = 0.0231 TG(t). (2.13)

6m

6
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The frequency of the sinusoidal component is proportional to the wire feed rate:

f fD = 1 1 revolution 1 min 3.26 x 10-3 WF, (2.14)
7E 1.626 in 60 s

where 1.626 inches is the diameter of each pinch roller and the wire feed rate wF is given in inches

per minute.

Equations (2.12) and (2.14) reflect a key assumption. Wire feed rate WF is taken to be

constant in (2.14), resulting in a constant disturbance frequency fD in (2.12). However, wF

actually fluctuates in response to computer commands during control of the weld process. This

3I"  complication, along with the fact that TL(t) can aIso affect WF through the motor dynamics, cause

the disturbancc to be not truly sinusoidal. The frequency fD actually approximates only the

principal component of the disturbance. The simplification is validated by the fact that this

principal component is the only one that has a severe effect on the wire feed rate. Figure A.2 of the

Appendix shows a typical wire feed rate signal taken from experimental open-loop data. A Fourier

transform of the signal shows that a principal component is indeed present at near the predicted

frequency.

Extensive open-loop experiments show that typical values for constants A and B in (2.12)

are 141 and 15.0 oz-in respectively. Reasonable wire feed rates lie in the 200-400 IPM range,

resulting in disturbance frequencies of 0.65-1.3 Hz. These facts yield a typical torque load at the

motor shaft of

TL(t) = 3.27 + 0.35 sin (27t fDt) oz-in, 0.65 Hz < fD < 1.3 Hz. (2.15)

Section 2.2 shows that the wire feed motor resp-!ids to frequencies exceeding 9 Hz. Since

wire feed rate is a principal variable in the control of weld quality, a successful wire feed servo

controller must attenuate this disturbance as much as possible.

7



2.4. Discretization of the Wire Feed Mechanism Model

Since wire feed rate control is to be accomplished with a digital computer, a discrete-time

model of the wire feed mechanism is necessary. Insertion of the first-order motor model of Figure

2.4 into the wire feed mechanism block diagram of Figure 2.1 yields Figure 2.5.

T (t)

w (k)F"-'+ ' ,_ + - S pm /m t)i

-R- HFFz) ZOR. KE - + 1/Kn(nt w (L00

COMPUTER Ts.. . ... .. .

Figure 2.5. Wire feed servo block diagram. i

The reference wire feed rate wR(k) is given in inches per minute. Figure 2.5 provides for a two I
degree offreedom controller structure that features both feedforward and feadback filters.

The scaling factor Kw converts motor angular velocity W.0m (rad s-2) into wire feed rate

wF (IPM). Figures 2.1 and 2.2 yield

Kw 1 7t.1.626 in 1 revolution 60 s = 0.7447 IPM-sK 65.5 1 revolution 27c rad 1 min rad

The factor KT converts motor angular velocity Orm into the tachometer voltage eTr.

1 2 V 1 revolution 60 s = Vs
KT 5 1000 RPM 27t rad 1 I - 3.820 x 10 radU

Finally, KE converts the .puter control voltage u into torque (oz-in). i

KE 4 K =5.129 ozin i
I
I



Discretization of the continuous-time dc motor transfer function is accomplished through

the use of the hold equivalence method (Franklin & Powell (1980)):

G(z) = (I - z- 1)  I (s+ i ).

The Z-transform may be evaluated by using the transform pair

4-WeaT) ; T "= sample period.s (s + a ) (z - l)(z -6 T

This yields
1 1 - exp(-pmTs) (2.16)

G(z) = Jm Pm z - exp(-pmTs) (

Make the following definition:

G(z) KD (2.17)
Z - PD

where
1

KD = pm---[ 1 - exp(-pmTs)],

and

PD = exp(-pmTs).

A discrete-time model of the entire wire feed servo system is shown in Figure 2.6.

TL(k)

w )e (k)

Fe Ss k

Figure 2.6. Discretized wire feed servo block diagram.

9



Analysis and controller design are simplified by introducing the normalized model of

Figure 2.7.

TL(k)

Figure 2.7. Discretized and normalized wire feed servo block diagram.

where
KT

WR(k) -- WR(k), HFF(Z) = KE KD KT HFF(Z),

- KT ^WF(k) =- wF(k) HF(z) = HFB(Z)

TL(k) = KD KT TL(k).

The controller design is carried out on the normalized system for simplicity. Then the actual

controller filters HFF(Z) and HF(z) are found from the normalized ones.

1
I
I
I
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CHAPTER 3.

WIRE FEED SERVO CONTROLLER DESIGN

3.1. Design Objectives

The wire feed servo is a closed-loop system within the arc current control loop as shown in

Figure 3.1. It is important to consider the system as a whole while formulating the design

objectives for each subsystem. This nested control-loop structure allows the two controllers to

share the burden of the total design.

R. .. . a ( t)ut

ar crrn wrefedwire feed arc current
controller controllerplant

COMPUTER

Figure 3.1. Nested control-loop structure.

The wire feed servo must, of course, exhibit zero steady-state error for a constant reference

signal wR(k). In addition, the wire feed plant is subjected to a disturbance torque of the form

TL(t) = A + B sin (2n fDt) oz'in, 0.65 Hz < fD < 1.3 Hz. (3.1)

This disturbance must be attenuated as much as possible since it falls within the passband of the arc

dynamics.

11



High frequency arc noise occurs which should be attenuated around the loop so that it does

not interfere with tracking of the reference signal iR(k). For this reason the wire feed servo's

bandwidth will be limited to 4.0 Hz. A damping ratio " of 0.707i will yield a reasonable step

response.

Chapter 1 ended with the development of the discretized and normalized wire feed servo

block diagram of Figure 3.2.

TL(k)

Figure 3.2. Discretized and normalized wire feed servo block diagram.

The controller transfer functions HfFF(Z) and fIHI(z) must be designed to accomplish the objectives

stated above.

The sampling interval Ts is selected according to a practical rule given in Astrom &

Wittenmark (1984). The sampling rate should be six to ten times the closed-loop bandwidth.

1

4Hz BW => 24Hz < - < 40Hz = 0.025s < Ts < 0.042s. (3.2)

A sampling interval Ts of 0.04 second will be used for data conversion.

Numerical values for the discretized plant parameters KD and PD may now be calculated:

KD = JmP 1 - exp(-pmTs) ] = 29.3159,

and

PD = exp(-pmTs) = 0.102182.

12



The design objectives relating to reference tracking characteristics may be conveniently met

by selecting a desired reference-to-output transfer function. Consider the continuous-time, second-

order transfer function

* VF(S) (On 2

HI(s) = - S2 + 2ci00S + con 2  (3.3)

H(jow) has logio magnitude given by

IHc(jo)I dB = -201og0 ( 1 - 2 + ( 1 (3.4)
WIn2  

0n

The zero steady-state tracking error requirement is achieved because I H'I(0) dB is zero

for any choice of C and wn. The damping ratio C can be specified directly and the natural frequency

(On can be chosen to obtain a 4 Hz bandwidth. Define co, to be the cutoff frequency. We must

have

3oc = 21r fc = 2xt (4 Hz) = 8it rad-s-I, (3.5)

1 -3 dB= I H 1c(jc%)I dB =-20lOgl 0 l(o1- +
2  ( +(2o) 2  (3.6)

Simplification of (3.6) yields

I 2 =(1-21-2 )2 + (2C ) 2 (3.7)
(On 2  n

Substitution of the desired of \IT esults in

On = Cic. (3.8)

Thus the natural frequency is equal to the cutoff frequency for this choice of damping ratio.

13



The desired continuous-ime transfer function is now given by

631.655
Hci(s) = s2 + 35.5431s + 631.655 (3.9)

The zero-order-hold equivalent discretization of H(s) is found with the aid of Table 3.1 of

Astrom & Wittenmark (1984).

HI(z) WF(Z) b1z + b2
WR(Z) z2 + a1 z + a2 (3.10)

The coefficients bl, b2, al, and a2 are found as follows:

Co = on 1-z = 17.7715, bI = 1 -+ 3 = 0.307238,

c = exp(- _coTs) = 0.491221, b 2 = a 2 + 0C (-( t- = 0.189566,

= cos(wTs) = 0.757800, a, = - 2cf3 = - 0.744495,

' = sin(coTs) 0.652487, a2 = CC2 = 0.241298.

Substitution of these numerical values into (3.10) yields

HI(z) : WF(Z) 2 0.307238 z + 0.189566 1
WR(z) Z - 0.744495 z + 0.241298 (3.11)

The objectives for the wire feed servo controller design are now reduced to the attenuation

of the torque disturbance and the achievement of the desired reference-to-output transfer function

of (3.11). Figure A. 1 of the Appendix shows magnitude plots of the open-loop wirefeed plant

(plot 1) and the desired reference-to-output transfer function (plot 2).

1
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3.2. Proportional-Sum Controller Design

A simple proportional-plus-sum digital control strategy is employed to achieve the design

objectives as closely as possible.

IHFF(Z) = Kp + z - Kpz + (Ks - Kp) HFB(Z = 1 (3.12)

z- z - IHF()1.312

Insertion of this controller into the block diagram of Figure 3.2 yields Figure 3.3.

T(k)

z_, z - 0.102182

Figure 3.3. PS controlled wire feed servo block diagram.

3 The accumulator action in the feed-forward controller gives zero steady-state tracking error

for constant reference inputs as well as rejection of constant disturbances. However, since only

the two design parameters Kp and Ks exist, an exact matching of the desired reference-to-output

transfer function of (3.11) is impossible. The desired characteristic equation can be obtained but

then no degrees of freedom will remain with which to place the closed-loop zero.

The reference-to-output transfer function is given by

U =WF(Z) Kpz + (KS - Kp)
Hcl(Z) = WR(z) - (z - 0.102182)(z - 1) + Kpz + (Ks - Kp) (3.13)

Define the characteristic equation (denominator of the closed-loop transfer function) to be A(z).

A(z) = z2 + (Kp - 1.102182) z + (Ks - Kp + 0.102182). (3.14)

15



The desired characteristic equation of (3.11) is

A(z) = z2 - 0.744495 z + 0.241298. (3.15)

By setting (3.14) equal to (3.15) and equating coefficients of like powers of z, one obtains

Kp = - 0.744495 + 1.102182 = 0.357687 (3.16)

Ks = 0.241298-0.102182+Kp 0.496803.

The resulting proportional-sum wirefeed controller is

I2FF(Z) = 0.357687 z + 0.139116 (3.17)

HfFB(Z) = 1.

Plot 3 of Figure A. 1 in the Appendix shows the magnitude of the closed-loop disturbance-to-

output transfer function resulting from use of the PS controller of (3.17). The upper half of Figure

A.3 shows a wirefeed experiment utilizing this controller. Comparison with Figure A.2 shows a

reasonable amount of low frequency disturbance attenuation over the open-loop experimental

results.

3.3. Polynomial Controller Design

The proportional-sum controller's simple structure does not utilize the feedback filter and

this method only gives the designer two parameters to tune. In order to better accomplish the

design objectives, the more sophisticated controller of Figure 3.4 will be used.

The design methodology presented in this section treats the various transfer functions as

rational polynomials in z. This polynomial method provides a step-by-step way to construct a

higher-order controller. See Chapter 10 of Astrom & Wittenmark (1984). This design will exactly

match the desired reference-to-output transfer function. It will also improve low frequency

disturbance rejection by placing a 1 Hz zero in the disturbance-to-output transfer function.

16



T (k)
Feedforward

controllerPln

I Figure 3.4. Polynomial representation of wire feed servo.

i Throughout this section, H(z) will represent a rational transfer function in z, while all other

capital letters will represent polynomials in z. A polynomial in z is of the form
w P(z) = anz n + an

1 zn-1 + ... +az+a 0 ,

where the degree of P(z) is n, and P(z) is said to be monic if an is unity. With this notation in

mind, the following definitions are presented:

(z)1

Plant: H(z) "= t(z) = z a 0.102182 ' (3.18)

_Bm(z) 0.307238 z + 0.189566Model: Hm(z) i Am(z) = z 2  0.744495 z + 0.241298' (3.19)

P T(z) S((z)

Controller: ItI (z) R--) ( " (z (3.20)

The rational transfer functions of the controller must at least be proper in order for the controller to

be causal and, therefore, implementable. Thus the polynomials R, S, and T must be such that

deg(R) > deg(T) > deg(S). (3.21)

Furthermore, restrict polynomials A, Am, and R to be monic and assume no pole-zero cancellation

in either of the transfer functions H or Hm.

17



The plant and model polynomials can now be identified:

A(z) = z - 0.102182, B(z) = 1. (3.22)

Am(z) = z2 - 0.744495 z + 0.241298, Bin(z) = 0.307238 z + 0.189566. (3.23)

Examination of Figure 3.4 yields the following transfer functions:

VF(Z) I2IFFH WF(z) H
WR(Z) 1 + HFFHFBH ' TL(Z) 1 + HFFHFBH (3.24)

Substitution of (3.18) and (3.20) into (3.24) gives

WF(Z) BT WF(Z) BR
WR(Z) AR + BS TL(z) AR + BS (

Zero steady-state response to constant disturbances as well as to 1 Hz disturbances is

required. The disturbance-to-output transfer function of (3.25) must have zeros at these

frequencies. A polynomial of the form

P(z) = (z - r eJ°)(z - r e-j ° ) = z2 - 2r cosO z + r2  (3.26)

has complex conjugate zeros at

z = r exp(± jO).

With the radius r set to one, P(z) has its zeros on the unit circle at angles ±0. Thus P(z) will zero a I
sinusoid of frequency 0. A 1 Hz disturbance has a discrete-time normalized frequency given by I

0 = 2n fD TS = 27c(l Hz)(.04 s) = 0.2513 rad. (3.27) I
Consider a controller polynomial R(z) of the form I

R(z) = (z - 1)[z 2 - 2 cos(0.2513) z + 11 . (3.28) I
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3 From (3.25) it can be seen that a zero of R(z) will also be a zero of the disturbance-to-output

transfer function. The (z - 1) term provides a zero at dc, while the quadratic term provides zeros at
i 1 Hz.

The reference-to-output transfer function is required to be Hm(z). A comparison of (3.19)

3 with (3.25) yields the restriction

BT _ Bm (.9
AR + BS Am (3.29)

Since R(z) has been specified as (3.28) and since A, B, Am, and Bm are also fixed, only S and T

remain free to satisfy (3.29). Recalling that B is unity for the normalized plant, it may be

eliminated in order to write

T(z) = Bm(z) = 0.307238 z + 0.189566. (3.30)

S(z) = Am(z) - A(z)R(z)

= (z2 - 0.744495 z + 0.241298) - (z - 0.102182)(z - 1)(z 2 - 1.93718 z + 1). (3.31)

I Unfortunately, this solution results in a noncausal controller since restriction (3.21) is

violated. Notice that the degrees of R, S, and T are three, four, and one, respectively. This

problem is elegantly solved by the introduction of an observer polynomial Ao(z). Requirement

3 (3.29) is unaltered by the modification

BT BmAo

AR+BS = AmAo, (3.32)

3 for any polynomial A.. However, we now have the relations

3 T(z) = Bm(z)Ao(z) = (0.307238 z + 0.189566) A0 . (3.33)

3 S(z) = Am(z)Ao(z) - A(z)R(z)

= (z2 - 0.744495 z + 0.241298) Ao - (z - 0.102182)(z - 1)(z 2 - 1.93718 z + 1). (3.34)

I

I



Careful examination of (3.33) and (3.34) reveals that any monic A, of degree two will yield

deg(R) = deg(S) = deg(T) = 3, (3.35)

resulting in proper third-order feedforward and feedback controllers. The observer polynomial

derives its name from the fact that it is cancelled out of the reference-to-output transfer function just

as the dynamics of a state-space observer would be. It does, however, appear in the denominator

of the closed-loop disturbance-to-output transfer function.

WF(Z) BT BmAo VF(Z) BR R
WR(z) - AR + BS rAmAo' TL(Z) AR + BS AmAo (3.36)

The poles of this quadratic can be used to further improve the disturbance rejection without

modifying the reference tracking characteristics. Their location was chosen by an iterative process

of simulation. It was found that a frequency of 1 Hz and a radius of 0.6 yield the most desirable

transfer function. Equation (3.26) gives

Ao(z) = z2 - 2(0.6)cos(0.08nt) z + (0.6)2 = z2 - 1.16230 z + 0.36 . (3.37)

Substitution of (3.37) into (3.33) and (3.34) completes the design.

R(z) = 1.000000 z 3  2.937166 z 2 + 2.937166 z - 1.000000,

S(z) = 1.132553 z3 - 1.770668 z2 + 0.751647 z - 0.015315, (3.38)

T(z) = 0.307238 z3 - 0.167536 z2 - 0.109727 z + 0.068244.

The resultirg polynomial method wirefeed controller design is given by

IHIFF(Z) 0.307238 z 3 - 0.167536 z2 - 0.109727 z + 0.068244 (339)=F(Z z3 - 2.937 166 Z2 + 2.937166 z - 1.000000 (.9

3.686248 z3 - 5.763188 z 2 + 2.446468 z - 0.049847z3 - 0.545299 z2 -0.357140 z + 0.222120
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Plot 4 of Figure A.1 in the Appendix shows the magnitude of the disturbance-to-output transfer

function for this wirefeed controller. The lower half of Figure A.3 shows the results of a wirefeed

experiment using the controller of (3.39). A comparison of this design with the proportional-sum

design of Section 3.2 shows that the polynomial controller improves low frequency disturbance

rejection while worsening performance at higher frequencies. This result can be predicted by

examining the frequency responses of Figure A. 1.

3.4. Two Degree of Freedom Controller Design

By forcing a zero at 1 Hz, the design of Section 3.3 accentuates higher frequency

components of the torque disturbance. A controller that is capable of rejecting the strong low

frequency components without amplifying the higher frequency ones is very desirable. To this

end, tenpararily ignore the reference input WR(k) and treat the wire feed servo as the simple SISO

regulator of Figure 3.5.

Fu3 Wr rplant o

T (k) + F K7 + ks-)

L F(

k~) K + 1 - zl,(.40

controller

Figure 3.5. Wire feed regulator.

Let the controller 6(z) have a simple proportional -sum structure.

Ks Kpz + (KS - Kp)
G(z) = Kp + z-1- z-1(3.40)

The accumulator action will guarantee zero steady-state error for constant torque disturbances just

as it did in Section 3.2.
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The closed-loop disturbance transfer function is given by

Z WF(Z) z- 1

HL(Z) = TL(Z) (Z - pD)(Z - 1) + Kpz + (KS - Kp) (3.41)

z-1
z + (Kp- PD - I)Z + (Ks - Kp+ PD)

The PS controller allows arbitrary placement of the closed-loop poles. The objective is to

minimize the regulator's response to disturbance inputs all the way from dc out to the Nyquist

frequency. The effect of pole location on the magnitude of the frequency response will now be

considered with the aid of Figure 3.6.

Im(z)

PI dP2Re(z)

Figure 3.6. Z-plane pole-zero plot of HL(Z).

Let di be the absolute distance from the ith pole or zero to the point on the unit circle that

corresponds to the frequency of interest. Let the ith pole or zero be located at the point

z - x+jy.

This distance may be expressed as

di = Iei0 - x-jy (3.42)
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Now let the poles of HL(Z) be located at a ± jb. We have

z-l

HL(Z) = (z - a - jb)(z - a + jb) ' (3.43)

and

e ei-l[ d,
HL(eJ)I eiO-a - jb I I ei-a + jbI dp1 dp2 (3.44)

Examination of (3.44) in conjunction with Figure 3.6 gives the designer considerable

intuition. The zero at DC causes (3.44) to increase for higher frequencies. Extending this idea, we

now see why an additional zero at 1 Hz causes the accentuation of high frequency disturbances.

Conversely, the poles decrease (3.44) as they are placed farther away from the frequency of

interest. Since the objective is to push the disturbance down as much as possible across the entire

frequency range, it is readily seen that placing both poles at the origin is the best solution. A

controller design that places all of the closed-loop poles at the origin is called a deadbeat response

design (Kuo (1980)).

Thus we have a desired closed-loop disturbance-to-output transfer function:

z-1 z-1
HL(Z) - z2  = z 2 + (Kp-pD- 1)z + (Ks- Kp+ PD) (3.45)

Matching coefficients of like powers of z in the denominators yields

Kp - PD - I = 0, KS - Kp + PD = 0. (3.46)

Recalling that PD is 0.102182 and solving for the controller gains give

Kp = 1.1022, Ks = 1.0000, (3.47)

and

G(z) Kpz + (Ks - Kp) 1.1022z- 0.1022 (3.48)
z- 1 z- 1

Now that the desired torque disturbance controller 6(z) has been designed, we can return

to the full multi-input problem.
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I
TL(k)

^ [ ^ Ik) + +(k)

RI
I

Figure 3.7. Full wire feed servo block diagram. U
A comparison of Figures 3.5 and 3.7 results in the relation U

6(z) = iFF(Z) HjIB(z). (3.49)

Also from Figure 3.7,
WF(Z) HFFH

HR(Z) := WR(Z) = 1 + -FF-FBH (3.50)

and

HL(Z) . F(z) = - H (3.51)
TL(Z) 1 + HtFFHFBH

A second relation is obtained from (3.50) and (3.51):

HR(Z) = tFF(z) HL(Z). (3.52) I

The feedforward and feedback controllers can now be found from (3.49) and (3.52). I
I-IFF(Z) = HL 1(z) HR(Z), HjF(z) = H"FF'(Z) 6(z). (3.53)

Recall the desired reference-to-output and disturbance-to-output transfer functions:

0.307238 z + 0.189566
Reference: HR(Z) = 2 - 0.744495 z + 0.241298 (3.54)

z- I
Disturbance: HL(Z) = 2 (3.55)

I
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Substitution of (3.54) and (3.55) into (3.53) obtains the controller transfer functions. The

resulting two-degree-of-freedom wirefeed controller is given by

I 0.307238 Z3 + 0.189566 Z2 (3.56)
- I2I~~~r:(Z) 3 - 1.744495 z2 + 5.985793 z - 0.241298 (.6

F( 3.587452 z 3 - 3.003382 z 2 + 1.113222 z - 0.080242
FB(Z) z 3 + 0.617001 z 2

Plot 5 of Figure A.1 in the Appendix shows the magnitude of the disturbance-to-output transfer

I function for this wirefeed controller. Figure A.4 shows the results of a wirefeed experiment using

the controller of (3.56). A comparison of the open-loop and the three contolleis presented in this

I chapter is given in Figure A.5. The two-degree-of-freedom controller yields superior disturbance

rejection at all frequencies.

I
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CHAPTER 4.

ARC DYNAMICS MODEL

4.1. Overview of the Gas Metal Arc Welding Torch

The wire feed servo rotates a set of pinch rollers, which force the wire into the torch head

and through the contact tube whereupon the wire is consumed by the welding process, as

illustrated in Figure 4.1. The wire feed servo is in itself a feedback controlled system which is

capable of delivering wire to the weld process at a controlled wire feed rate. For the purposes of

this derivation, the wire feed rate wF(t) is considered to be the input. The arc dynamics form the

plant and the arc current ia(t) is taken to be the output.

weld wire

0 pinch rollers

S torch head

contact tube

work piece

Figure 4.1. GMAW torch.
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I
I Assumption 4.1.

H = la(t) + ls(t) = constant 
(4.1)

where H is the contact tube height, la(t) is the arc length, and Is(t) is the stickout length. This

assumption is motivated by careful examination of the side profile of the weld bead when the arc is

abruptly extinguished. Figure 4.2 shows how the weld material piles up behind the arc as opposed

to under it.

I weld wire

Figure 4.2. Side profile of weld bead.

Figure 4.3 shows the electrical model of the arc dynamics.

R s  Ls

R1 S(t)

-i(t) ARC v(t)

Figure 4.3. Electrical model.

a
I

27



Signals and Constants:

Va(t) arc voltage V, open circuit voltage of arc welder power supply

ia(t) arc current R, Thevenin resistance of arc welder power supply

vcr(t) contact tube voltage plus cabling resistance

L, inductance of arc welder power supply

Rl,(t) resistance of stickout length (time varying)

Assumption 4.2.

The electric arc is modeled as shown in Figure 4.4, where Vo is the sum of the cathode and

anode voltage drops, Eo is the electric field intensity of the arc plasma, and la(t) is the length of the

electric arc.
i(t)3
a

+ Ivo
i ARC v(t) va(t)

(t)a~t-
++

0IT ~EOlIa(t)

Figure 4.4. Arc model. 3
There are two modes associated with the arc: n

TE = electrical mode; the arc can be modelled as a time varying conductance.

tT = thermodynamic mode; consumption of the wire. 3
Time constant TT exceeds TE by approximately two orders of magnitude. A static model is

therefore used for the arc electrical circuit. However, the dynamics of wire consumption will not 3
be ignored.

I
I
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4.2. Development of the Dynamic Equations

Kirchhoffs Voltage Law applied to Figure 4.3 yields the electrical constraint equation,

rdia(t)
Vs = Rsia(t) + Ls LL + Rls(t) ia(t) + Vo + Eo la(t) . (4.2)

The stickout length resistance R1,(t) can be written as a function of the arc length:

R1s(t) = A (t) = W [ H - la(t) ] (4.3)

where p is the resistivity of the weld wire ( Q • in ) and A is the cross-sectional area of the weld

wire. Substitution of (4.3) into (4.2) yields the electrical constraint equation in final form:

dia(t) 1 p V -Vo
dt = - [ R + H] ia(t) + ia(t) la(t) - la(t) + (4.4)

Define wF(t) to be the feed rate of weld wire and define wC(t) to be the consumption rate of

weld wire in inches per minute. Since la(t) is the length of arc in inches, the following relation

must hold:
dla(t) 1 min(
dt = 60s ( wC(t) - WF(t) (4.5)

Following Waszink & Van Den Heuvel (1982),

6 0 s i 2 t S twC(t)= T [ k, ia(t) + k2 ia2(t) (t) (4.6)

where the second term is due to joule heating.

Assumption 4.1 and Equations (4.5) and (4.6) yield the mechanical constraint equation:

dla(t) k, ia(t) + k2 H ia2(t) - k2 ia2(t) la(t) - - COF(t) . (4.7)
dt 60

The arc current ia(t) and the contact tube voltage vCr(t) are measured quantities, while the

arc length la(t) is not measured. It is for this reason that an additional relation is of interest.
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I
Kirchhoffs Voltage Law applied to an inner loop of Figure 4.3 gives

VCT(t) = Rls(t) ia(t) + Vo + Eo la(t). (4.8)

Substitution of (4.3) into (4.8) allows la(t) to be measured indirectly:

VCT(t) = pHa(t) - ia(t)la(t) + E0 la(t) + V,. (4.9)

Summary of the arc dynamics model:

dia(t) 1 .R VsVo 3dt = - s + H]a(t) + P ia(t) la(t) - la(t) + Vs

dt - k ia(t) + k2 H ia2(t) - k2 ia
2(t) la(t) wF(t) (4.10)

vc-t = (t)- - ia(t) la(t) + Eo la(t) + V,

where3

ia(t) = arc current, Vs = open circuit voltage of power supply,

la(t) = arc length, Rs = resistance of power supply and cabling, 3
Ls = inductance of power supply,

VC-T(t) = contact tube voltage, p = resistivity of weld wire, 3
A = cross-sectional area of weld wire,

WF(t) = wire feed rate, H = contact tube height, I
V. = sum of cathode and anode voltage drops,

E= electric field intensity of arc plasma, 3
kl, k2 = wire consumption rate constants.

I
I
I

30 3
I



4.3. Calculation of the Parameter Values

The following nominal operating point (measured experimentally) is used as a basis:

ia = 340A. vCr = 31 V.
1l, = 0.25 in. 0OF = 300 IPM.

The power supply is set for a Vs of 40 V, and the manufacturer's specifications show an Ls of

400 j.H. The 0.0625-inch diameter weld wire has a cross-sectional area A of 3.068x10 -3 in2 .

The contact tube height H is set at 1 in. Wu & Richardson (1984) approximate p at 40 t2.in.

Table A. 1 of that paper yields an E. of 26 V.in-1.

For the calculation of V. and Rs, consider the electrical model in steady-state as shown in

Figure 4.5.

Rs

VV

S 7

+

Figure 4.5. Electrical model in steady-state.

Analysis of the circuit in steady-state yields the following relations:

R V S - VCTia

V, = VCT - Eola - Risia VCT- Eola -" (H - la) ia. (4.11)

Substitution of the numerical values gives an Rs of 0.02647 Q and a V. of 21.18 V.
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Estimation of the constants k, and k2 requires use of experimental data. Curve fitting with

actual welding runs yielded the approximate relation

wc = 0.59398 ia + 0.00047164 i,2 ,  (4.12)

where wc is in inches per minute and ia is in Amps. Setting (4.12) equal to (4.6) gives

0.59398 ia + 0.00047164 ia2 = 60 ( k ia + k2 ia2 1,)• (4.13)

Substitution of the operating point values for ia and l into (4.13) gives

kl = 9.8997x10-3 in.A-1-s-1 , k2 = 1.0481x10 -5 A-2 .s- 1 .

These values of k, and k2 yield a wire consumption rate wc of 260 IPM for an arc current of

340 A. This rate is within 10% of the experimentally measured operating point value.

The arc dynamics model is now complete with numerical coefficients.

Arc dynamics model:

dia(t. ) - 9.8770x101 ia(t) + 3.2595x10 1 ia(t) la(t) - 6.5x10 4 la(t) + 4.705x10 4

dt

(4.14)
dla(t) = 9.8997x10 -3 ia(t) + 1.0481x10 5 ia2 (t) - 1.0481x10 -5 ia 2 (t) la(t) - 1.667x10"2 wF(t)

dt =

vcr(t) = 1.3038x10 "2 ia(t) - 1.3038x10 -2 ia(t) la(t) + 2.60x10 1 la(t) + 2.118x101

with ia(t) in amperes, la(t) in inches, vCT(t) in volts, and wF(t) in inches per minute.

4.4. Linearization of the Model

A linear approximation to the arc dynamics model is used for the controller design. Define

input u(t) to be the wire feed rate wF(t). Define state x1(t) to be the arc current ia(t), and define

state x2(t) to be the arc length la(t) in order to write the nonlinear state equations of (4.15).
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il(t) = Cl xl(t) + C2 xl(t) x2(t) + C3 x2 (t) + di = fl(Xl, x2 ) + di

k2(t) = C4 Xl(t) + C5 x1
2(t) + C6 x 1

2(t) x2(t) + b2 u(t) = f 2(xl, X2) + b2 u (4.15)

Now, make some further definitions:

x[]. f(x) : = b ( 1 [0)2] d'= [dl]; (4.16)x := x2 ' f2(x1, X2)1' b2 0

_ fi(Xa, X2) A " -all a12(.)
aXj La2l a22 (4.17)

Using the above vector notation, the system becomes

x = f(x) + bu + d. (4.18)

Furthermore, the linearized system is given by

5 = A 8x + b 8u, (4.19)

where the partial derivatives of the A matrix are evaluated at a nominal operating point Xnom and the

variables 8x and 8u represent reasonably small perturbations from this operating point

(Brogan (1982)). The partial derivatives of (4.15) are taken to obtain

all = Cl + c2x2, a12 = c2 x1 + C3,

a21 = c4 + 2 c5 xI + 2 c6 X x2 , a22 = C6 Xl2 . (4.20)

Now, since the arc current ia(t) is the variable to be regulated and the arc length la(t) is not

really of interest, define the system output y(t) to be the arc current state variable xl(t). In vector

notation,

By = c8x; c := [1 0]. (4.21)

Finally, the single-input, single-output system of (4.19) and (4.21) has a transfer function

H(s) that is given by

H(s) = c(sI -A)-' b. (4.22)
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If the characteristic polynomial of A is denoted by A(s), then H(s) can be written as

H(s) =a12 b2 A(s) = S2 - (all + a22) s + (all a22 - a12 a21). (4.23)A(s)

Consider three values for the arc current; 200 A, 340 A, and 400 A. These values span

the range of reasonable arc currents for welding. Now consider the nonlinear dynamic equations

of (4.14) in steady-state (derivatives equal to zero). These equations can be used to find steady-

state values for the arc length and the wire feed rate that correspond to each arc current.

0 = -9.8770x10
1 ia + 3.2 595x10 t l ila - 6.5x10 4 1a + 4.705x10 4

(4.24)
0 = 9.8977x10 3 ia + 1.0481x10 5 ia2 - 1.0481x10-5 ia2 la - 1.667x10- 2 wF

Substitution of the arc currents into (4.24) yields the following three operating points:

ia = 200 A. =, la = 0.4668 in, WF = 132 IPM,

ia = 340 A. la = 0..2498 in, WF = 256 IPM, (4.25)

ia = 400 A. la = 0.1451 in, WF = 324 IPM.

Substitution of the numerical values of (4.14) and (4.25) into the relations of (4.15), (4.20), and

(4.23) yields the following three linearized arc dynamics transfer functions:

974,68
H(s)200A = s2 + 83.975 s + 744.72 (4.26)

898.63H(s) 340A = s2 + 91.839 s + 931.86 (4.27)

866.04
H(S) a00A = S2 + 95.700 s + 1044.6 (4.28)

Figure 4.6 shows how the poles of the linearized transfer function H(s) vary (in rad/sec)

with respect to nominal arc current. This variation is smooth and moderate, suggesting that a

single H(s) can be used for the design of the arc current controller. Choose this nominal transfer

function to be the 340 A H(s) of equation (4.27).
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Figure 4.6. Pole locations versus nominal arc current.
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CHAPTER 5.

ARC CURRENT CONTROLLER DESIGN

Chapter 4 ended with the development of a nominal continuous-time transfer function that

relates arc current to wire feed rate. Although the arc dynamics are nonlinear, it was shown that

the poles of the linearized system do not shift radically when the nominal operating point is varied.

It is therefore reasonable to use this nominal transfer function for the arc current controller design.

Chapter 2 posed the reference-tracking objectives for the wire feed servo in terms of a

desired reference-to-output transfer function. This transfer function was matched by the controller

that was designed in Chapter 3.

arc current " closed-loop arc current/
controller wire feed servo] plant

Figure 5.1. Closed-loop arc current system.

Figure 5.1 shows the arc current system with ia(t) and iR(k) given in amperes, and wF(t)

and wR(k) given in inches per minute. The closed-loop system is required to have a bandwidth of

1 Hz. Furthermore, the closed-loop step response should be without overshoot. The system is to

be mildly overdamped. Zero steady-state tracking error is required for constant reference inputs.

The arc current controller will be designed in a continuous-time setting and then discretized for

computer implementation.
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The design objectives are not difficult but the plant is nonlinear with uncertain parameters.

For this reason, a simple and robust proportional-integral controller will be used for the design.

Robust stability of the arc current is of primary importance for reasons of safety as well as weld

quality.

'R,) +K ia(t) )

Figure 5.2. Continuous-time arc current block diagram.

Figure 5.2 shows the arc current system in a continuous-time format. The output ia(t) of

the arc current plant and the reference input iR(t) are given in amperes. A "Hall effect" sensor

produces a voltage that is proportional to the arc current. A constant KH of 1 V per 100 A models

this sensor. The constant KW/KT converts volts to inches per minute. Its value is found in

Chapter 2 to be 194.95 IPM per volt. Finally, the wire feed servo has its input and output given in

inches per minute.

Chapters 2 and 4 give the closed-loop wire feed servo and the open-loop arc current

transfer functions.

63 1.655
Closed-loop wire feed: Hw(s) s2 + 35.5431s + 631.655 (5.1)

898.631
Open-loop arc current: HA(S) S2 + 91.8393s + 931.862 (5.2)

The proportional-integral arc current controller is of the form

HpI(s) = Kp + Kps + K(5.3)
3 7
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The controller design is simplified by introducing the normalized model of Figure 5.3. 1

R~t, +i (t)~I

I

Figure 5.3. Normalized arc current system.

where

i R(t) = KH iR(t), i a(t) = KH ia(t)

and

HpI(s) = Kp + ii = Kw Hpi(s). (5.4)s KT I
The composite plant Hw(s)HA(S) is fourth order with relative degree four. To this we

append a first-order controller, creating a fifth-order closed-loop system. A purely analytic design 3
of Hpi(s) to achieve a desired closed-loop bandwidth and damping would be difficult. For this

reason, the design was accomplished with the aid of iterative computer simulation. Integrator gain 3
was adjusted to achieve the desired bandwidth, and then the proportional gain was tuned to create a

mildly overdamped step response. The resulting gains are 3
Kp = 0.29, KI = 4.20. (5.5)

Thus the continuous-time proportional-integral controller is given by 3
" 4.20

Hpi(s) = 0.29 + S . (5.6) 3

I
I
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A simple Euler approximation with a sampling period Ts of 0.04 second is used for the

discretization of the PI controller. The resulting proportional-sum controller is

,z k K1 Ts =0.29 1 0.168 0.29z- 0.122Hps(z) = Kp +Fz -1 0.9 -'-" . (5.7)

Figure A.6 of the Appendix shows an experimental welding run. The arc current controller

was stepped across nearly the entire operating range to show the robust quality of the design. The

upper plot shows the arc current and the lower plot shows the closed-loop wirefeed reference WR(t)

(dashed line) and the wirefeed servo output wF(t) (solid line).

3

I

I
I

I
I
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CHAPTER 6.

CONCLUSIONS

From an academic point of view, the work exhibits some diversity. In Chapter 2 a wire

feed plant is developed which has simple linear dynamics but is corrupted by a severe torque

disturbance. This model is discretized and Chapter 3 presents three discrete-time controller designs

which vary considerably in performance, complexity, and design philosophy. Chapter 4 develops

a nonlinear arc dynamics model which is linearized for the controller design. Finally, in Chapter 5

a continuous-time arc current controller is designed and then discretized for computer

implementation.

The plots in the Appendix give testimony to the success of the final design. The torque

disturbance in the wire feed servo has been virtually eliminated while the servo exhibits desirable

reference-to-output characteristics. The fixed-parameter arc current controller is well behaved at all

operating points and is capable of stepping the arc current the full 100 A of its useful range.
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APPENDIX

SELECTED PLOTS

This appendix presents experimental data as well as computer simulated results. These

plots are gathered together to facilitate a convenient performance comparison of the various

controller designs. All Fourier transforms are presented on a decibel scale and have been

normalized by dividing by the average value of the time domain signal.

Figure A. 1 gives various magnitude plots that pertain to the wire feed servo controller

design. In numbered order these plots are: the open-loop plant, the desired reference-to-output

i transfer function, and the closed-loop disturbance-to-output for the proportional-sum, polynomial,

and two-degree-of-freedom controller designs.

3 Figure A.2 shows open-loop experimental data. Time domain plots and resulting Fourier

transforms are given for the wire feed rate and for the resulting arc current. Figures A.3 through

3 A.5 show experimental results for the three wire feed servo controller designs. Figure A.6 shows

experimental step response data for the final closed-loop arc current controller.
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